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Section 12 

Analysis of Variance (ANOVA) 

12.1 – Comparing Three or More Groups 

Introduction 

In the activity you completed this week, we investigated how we might make a comparison of three 

or more groups at once. We examined data on various oil supplements to determine if they had any 

significantly different impacts on reducing blood pressure. The goal of this was to come up with a 

way to test all of these groups simultaneously rather than look at all possible pairs. Why don’t we 

just do many pairwise comparisons, that is, compute t-tests for every possible pair of groups? Two 

reasons: 

• This can become very difficult to do quickly when the number of groups grows large. If 

there are 6 groups, that already means you have 15 comparisons to make, and this grows 

quickly! 

• With the number of tests you would perform, this may result in a higher chance of rejecting 

incorrectly: with a 0.05 significance level, you would expect 1 in 20 independent tests to be 

rejected even if the null were true. While these aren’t necessarily independent since the 

same groups are being re-used across pairs, it still becomes more likely to erroneously 

reject the null for some pair if you are comparing many groups or populations. (e.g., 5 

groups = 10 possible pairs)  

We derived our own statistic to measure overall differences each group had from the mean of all 

observations across all the groups. This likely involved looking at the sum of absolute value or 

squared differences from the overall mean. Generally, we will prefer looking at the sum of squared 

differences, as this is more calculus-friendly, and it also has the nice property of not weighing minor 

differences that could have been a product of random chance too heavily, relative to larger 

differences that get proportionally much larger when squaring.  

The method we used in-class worked out well because we were comparing groups of equal sizes. 

While this is hopefully how we would design a study, you are likely to get groups of unequal sizes 

for many reasons. For example, in an experiment, subjects may drop out by the end of the study. In 

an observational study, some populations many be naturally larger than others, meaning it would 

be difficult to get groups of equal size to compare. 

If we think about the implications of comparing groups of unequal sample sizes, there are a few 

things to consider: first, groups with larger sample sizes tend to have means that are more 

consistent (remember the central limit theorem!). Additionally, if there were a group mean based 

on only a few observations, it would get equal consideration as a group with a much larger sample 

size if we were to just take each group mean’s difference from the overall mean.  

To generalize the methods we derived in class earlier this week, we will derive the method of 

analysis of variance (ANOVA) in this section. ANOVA generalizes group comparisons when you have 

more than 2 groups. That is, it tests the following hypotheses: 

H0:     

 

Ha:   
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Like the informal test we computed in TinkerPlots this week, ANOVA will be decent at identifying if 

there are differences that exist between groups, but not necessarily what groups differ. We will also 

examine methods that will illuminate specific between-group differences within the ANOVA test. 

The one-way ANOVA model 

Say we’ve collected some data from several groups. That is, we have the following data from k 

populations or groups: 

Population 1: X11, X12, …, X1n1 

Population 2: X21, X22, …, X2n2 

⋮ 

Population k: Xk1, Xk2, …, X1nk 

Note that the groups don’t need to have equal sample sizes, hence the use of different subscripts for 

the last data point. Our goal is to determine if the means of the populations or groups are 

significantly different or not. To determine this, we can conceive of a model similar to how we built 

the regression model: 

Xij = µ + αi + εij 

Here, we define µ to be the population mean across all groups combined, αi to be the _________________ 

of group i, and similarly to regression, we define εij as the _____________ for data value Xij. Note that the 

way we define αi gives us that µi, the population mean of group i is defined to be µ + αi. Thus, we 

have defined a model that gives us data in terms of their population’s respective mean, plus some 

error term. 

Calculating an ANOVA test 

So far, there has been no reason to believe that this method should be called “Analysis of Variance” 

given that the main focus of this method is via examining means. However, we can do a population 

mean comparison by looking at the variability now that we have more than two population means 

to compare. We can examine the variability of those means themselves and see how their variability 

compares to the variability of the data itself within each group. First, we define the total variability 

of our data, that is, the total sum of the squared error terms. Here, we define this in terms of the 

data rather than the model:  

𝑆𝑆𝑇 = ∑ ∑(𝑋𝑖𝑗 − �̅�)2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

  

We define �̅� above as the overall sample mean, combining our data from all groups together:  

�̅� =
∑ ∑ 𝑋𝑖𝑗

𝑛𝑖
𝑗=1

𝑘
𝑖=1

𝑁
, where 𝑁 = ∑ 𝑛𝑖

𝑛

𝑖=1
 

Now, let’s get at the two sources of variability that we want to compare: the variability among the 

means themselves, and the variability of the data within each group. We define these each as the 

________________________________________ (SSG) and the ____________________________________________, or due to 

error (SSE): 
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𝑆𝑆𝐺 =  ∑ 𝑛𝑖(�̅�𝑖 − �̅�)2

𝑘

𝑖=1

             𝑆𝑆𝐸 =  ∑ ∑(𝑋𝑖𝑗 − �̅�𝑖)2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

  

Here, we define �̅�𝑖  to be the sample mean for group i. Through carefully deconstructing the sums 

above, it can be shown that SSG + SSE = SST, which illustrates that we have decomposed the total 

variability into two sources. SSG is very similar to the statistics we collected on in TinkerPlots 

earlier this week, but now it is scaled by the sample size to weigh larger groups more heavily.  

Going back to our initial intuition, we cannot simply compare the two values here, as it’s not a fair 

comparison given that we can have data sets of many sizes. We might have 1000 total data values 

from 3 populations, or just 150 total data values from 6 populations; the former would have a 

relatively high SSE by just having more data values, where the latter may have a relatively high SSG 

due to having more groups. Thus, we should standardize these sums to these sizes. 

The way we do this is via dividing by the degrees of the freedom for the test that we will be 

conducting, which gives us the mean squares between groups, and mean squares due to error. 

𝑀𝑆𝐺 =  
𝑆𝑆𝐺

𝑘 − 1
            𝑀𝑆𝐸 =  

𝑆𝑆𝐸

𝑁 − 𝑘
 

Now that we’ve standardized these measures of variability, we can compute a test-statistic to see if 

the variability between the group means (MSG) is too large relative to how the data varies within 

their groups (MSE). A relatively large MSG would be evidence that there do in fact exist differences 

between the groups relative to their means. Thus, to get a single value that carries this comparative 

idea, we can take the ratio of these two measures of variability. This is known as an F-test statistic: 

𝐹 =  
𝑀𝑆𝐺

𝑀𝑆𝐸
 

This may seem a bit predictable, but the F-statistic follows an F distribution. The F distribution is 

only defined on positive values and is skewed to the right, which makes sense since F is a ratio of 

measures of variability, which must be positive.  

The shape of an F distribution can vary wildly depending on its degrees of freedom: 

 

 

 

 

 

 

In the context of ANOVA, the F distribution we will be concerned with will be F(k – 1, N – k), that is, 

the F distribution on k – 1 and N – k degrees of freedom, as this is the specific F distribution that the 
ANOVA F-test statistic follows. To compute probabilities on the F distribution in R, you can use the 

following function: 

pf(F, df1, df2) 
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As the F-test statistic will always get larger as the means get more different, you will always want 

the complement of this probability as the p-value.  

This applet is helpful in visualizing the relationship between the variation within groups relative to 

the variations between the groups themselves, and how that impacts the F-statistic. You can adjust 

the MSE by the “standard deviation” slider, and you can adjust the MSG by moving the black dots to 

adjust the group means to be more similar or more different. 

12.2 – One-way ANOVA 

The ANOVA table 
It’s common for results of ANOVA analyses to be summarized in a table. For the basic type of 

ANOVA we’ve described, the table is typically formatted as shown below: 

 DF SS MS F P-value 

Groups k – 1 SSG 𝑀𝑆𝐺 =  
𝑆𝑆𝐺

𝑘 − 1
 𝐹 =  

𝑀𝑆𝐺

𝑀𝑆𝐸
 1 - pf(F, k-1, N-k) 

Error N – k SSE 𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑁 − 𝑘
 

  

Total N – 1 SST 
   

 

Example: The critical flicker frequency (cff) is the highest frequency (in cycles/second) at 

which a person can detect the flicker in a flickering light source. At frequencies above the 

cff, the light appears to be continuous even though it is flickering. A study in the Journal of 

General Psychology aimed to assess if the color of a person’s iris (Brown, Green, or Blue) 

has an effect on their cff. Researchers took independent random samples of people with 

each eye color: 8 with brown eyes, 5 with green eyes, and 6 with blue eyes. Assume that the 

necessary assumptions for ANOVA are met. A partial ANOVA table is given below – 

complete the table and conduct this test at level α = 0.05.  

 DF SS MS F P-value 

Groups  22.99    

Error  38.31  
  

Total  61.30 
   

In that example, we assumed that the assumptions of conducting ANOVA were met, but did not yet 

discuss those assumptions. Those four assumptions required to conduct ANOVA are: 

1. Each sample of data obtained is a random sample taken from its respective population. 

2. Each sample of data we have was sampled independently of the other samples. 

3. Each sample of data comes from a population that is normally distributed (can be 

overridden by ni ≥ 25 for each i) 

4. Each sample of data comes from a population with the same standard deviation. 

https://digitalfirst.bfwpub.com/stats_applet/stats_applet_1_anova.html
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All of these assumptions are not too surprising, maybe except for the last one. The reason for this is 

that we calculated MSE in a way that computes the squared distance of each data point from its 

group’s mean, and combined these squared terms together to measure variability. This implicitly 

assumes that the groups have equal variability, since this is the single measure used as a baseline 

for how much the data normally varies within groups – we don’t use a different measure of 

variability within each group. 

To check this assumption, there are many methods that can be used to verify this. One such method 

is called Levene’s test, which tests the following hypotheses: 

H0:     

 

Ha:   

Thus, in a weird twist of fate, coming to the decision of ______________________________ means that this 

assumption is valid. The typical level of significance used for this test is α = 0.10. We will see how to 

conduct Levene’s test in R later. 

Post-hoc analysis 

As mentioned previously, ANOVA can only tell you that differences exist, and does not provide 

information about which groups differ. After conducting an ANOVA test and finding significant 

differences between groups, a post-hoc analysis can be conducted to determine which groups 

actually differ. Many post-hoc methods exist, with one example being Tukey’s multiple 

comparisons. This does two-sample, two-sided tests on every possible pair of groups to determine 

possible differences. 

Important note: these two-sample tests use adjusted p-values to account for the fact that you are 

testing multiple hypotheses simultaneously. Remember: the more things you test, the higher the 

chance that you incorrectly reject the null hypothesis. The Tukey method raises the p-values 

appropriately to account for this, and it is noted in the table with the column label “p adj” for 

adjusted p-values. 

Example: For the cff example above, the following Tukey comparison results were given 

from R. Summarize the results of this analysis using level α = 0.05. 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = cff ~ eye, data = cff) 
 
$`eye` 
              diff   lwr   upr   p adj 
Brown-Green  -1.33 -3.61  0.94 0.07944 
Brown-Blue   -2.58 -4.74 -0.42 0.00485 
Green-Blue   -1.25 -3.66  1.17 0.10815 
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Conducting one-way ANOVA in R 

Example: In a large lecture, 200-level class, there are 115 students in class on a particular 

day. The instructor noted each student’s general location in the classroom as one of four 

categories: Front, Mid-Front, Mid-Back, and Back. The instructor also looked up each 

student’s current class standing and GPA. This data is stored in the file seating.csv. Carry 

out an ANOVA test to see if there are differences in the mean GPA for students that sit in 

differing regions of the lecture hall using level α = 0.05, and determine which pairs of 

seating groups differ. 

Check assumptions: 

table(seating$Seat) 
front = subset(seating, Seat=="Front") 
qqnorm(front$GPA) 
qqline(front$GPA) 

library(car) 
leveneTest(GPA~Seat, data=seating, center="mean") 
 

Create model: 

model = aov(GPA~Seat, data=seating) 
anova(model) 

Post-hoc: 

TukeyHSD(model) 
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12.3 – Two-way ANOVA 

Theoretical model 

In the previous example, we didn’t use the information about students class level at all. We could 

though investigate if there are differences according to the students’ seat location and their class 

level simultaneously. This introduces two factors into our model, hence we are doing two-way 

ANOVA and making a comparison of our response variable across two factors simultaneously. 

We can write out the statistical model for two-way ANOVA as follows: 

 Xijk = µ + αi + βj + γij + εijk 

Like before, we define µ to be the population mean across all groups combined. We call αi and βj  the 

_______________________ for group i of the first factor and group j for the second factor, respectively. We 

add a new ________________________ term to this model γij, and once again, we define εijk as the 
_____________ for data value Xijk. 

 

Through this setup, we can test hypotheses across the main effects and the interaction effects. This 

gives us three different null hypotheses to test: 

H0A:     

 

H0B:   

 

H0AB:  

These effects can similarly be summarized via an ANOVA table, which has more rows to consider 

the three tests being conducted as part of a two-way ANOVA. For the table below, say there are a 

different levels of Factor A, and b different levels of Factor B. 

 DF SS MS F P-value 

Factor A a – 1 SSA 𝑀𝑆𝐴 =  
𝑆𝑆𝐴

𝑎 − 1
 𝐹𝐴 =  

𝑀𝑆𝐴

𝑀𝑆𝐸
 

1 - pf(Fa, a-1, 
N-ab) 

Factor B b – 1  SSB 𝑀𝑆𝐵 =  
𝑆𝑆𝐵

𝑏 − 1
 𝐹𝐵 =  

𝑀𝑆𝐵

𝑀𝑆𝐸
 

1 - pf(Fb, b-1, 
N-ab) 

Interaction AB (a – 1)(b – 1) SSAB 𝑀𝑆𝐴𝐵 =  
𝑆𝑆𝐴𝐵

(𝑎 − 1)(𝑏 − 1)
 𝐹𝐴𝐵 =  

𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
 

1 - pf(Fab, (a-
1)*(b-1), N-ab) 

Error N – ab  SSE 𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑁 − 𝑎𝑏
 

  

Total N - 1 SST 
   

Building a two-way ANOVA model 

Since there are now multiple effects and factors to tease out, we need to use variable selection as 

we did for regression. One general procedure used in two-way (or n-way) ANOVA is as follows: 

1. Run model with interaction term (or all interaction terms, if going beyond two-way) 

2. If the (highest order) interaction term is significant, keep it in the model. Otherwise remove. 

3. If removed, re-run without that interaction and repeat step 2 until a significant interaction 

is present. 
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Example: Re-run the example regarding GPA and seat location from before, adding in class 

standing as a second factor of a two-way ANOVA mode. Are there any significant main 

effects from the class standing or from the interaction effects at level α = 0.05? 

model1 = aov(GPA~Seat*Class, data=seating) 
anova(model1) 

model2 = aov(GPA~Seat+Class, data=seating) 
anova(model2) 

 

 

 

 

It’s important to note that if an interaction term is significant in the model despite the main effects 

being insignificant, we can still conclude that the main effects have an impact on the response 

variable. Main effects describe only the average or overall effect, but the interaction between the 

two can highlight that they still have an impact. The following is an example of such an effect: 

Example: In an experiment to determine ways to treat people with Seasonal Affective 

Disorder (SAD), researchers randomly assigned 150 participants with similar levels of 

depression to one of two physical programs: aerobics and meditation, as well as replaced all 

home lighting with one of three types of lights: fluorescent, LED, and a natural lighting 

replica. Each subject was given the Beck Depression Instrument after the study, a 

questionnaire that measures the depression levels of patients. Data for this study can be 

found in the SAD.csv file. Determine if these two factors significantly impact the patients’ 

average depression level. 

smodel = aov(BDI~Lighting*Condition, data=SAD) 

aggregate(BDI~Condition, data=SAD, mean) 
aggregate(BDI~Lighting, data=SAD, mean) 
aggregate(BDI~Lighting+Condition, data=SAD, mean) 

 

 

 

Means Fluorescent LED Natural Overall 

Meditation 
 
 
 

   

Aerobics 
 
 
 

   

Overall 
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12.4 – Additional Practice 
Example: Students who have recently completed their first college course in statistics were 

recruited for a teaching experiment on building statistical learning models. These students 

were assigned to one of two lessons: one that was lecture-based, and one that involved an 

interactive activity. The students were then asked to complete an assessment after the 

lesson, which was scored based on their correct answers. They were also asked about their 

motivation for learning statistics (low, mid, or high). The researchers conducting this 

experiment are interested in determining what factors are important in determining the 

students scores on the assessment. The data for this study can be found in the file 

teaching.csv. 

We will first determine if the motivation level impacted students’ scores on the assessment. 

Check the assumptions for conducting an ANOVA test on this data. 

 

 

 

 

 

 

Conduct a one-way ANOVA test to determine if there are differences in the assessment 

scores based on students’ motivation.  

 

 

 

 

 

Conduct a post-hoc analysis to determine which pairs of groups are different at a 5% level. 

Use a connected lines visualization to illustrate which groups are determined to be 

similar/different. 
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Conduct a two-way ANOVA to determine how both the teaching style and motivation affect 

the assessment score. Should an interaction term be included? 

 

 

 

 

 

 

 

Find the average score for each pair of teaching style and motivation. How do these means 

explain a possible interaction effect? 

 

 

 

 

 

 

 

 

 


